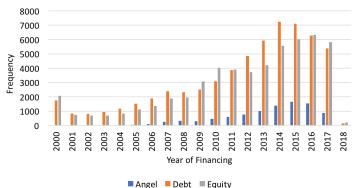
The Leveraging of Silicon Valley: Venture Debt in the Innovation Economy

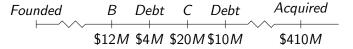

Jesse Davis, Adair Morse, Xinxin Wang

July 3, 2018

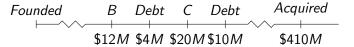
◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Motivation

Debt issuance by start-ups has increased exponentially since 2000.


Frequency of Financing Rounds by Type

In particular, venture debt is utilized in 28-40% of all financing rounds.


Venture debt is not mezzanine debt:

- Senior in the priority structure
- Short-term loan (36 months)
- Typical interest rate is prime + 5-10%
- First 6 months, IO. After, monthly payments of P&I
 - Effectively **repaid through future equity issuance** (Hochberg et al. (2018))
 - Some cases, patents serve as collateral (Ibrahim (2010), De Rassenfosse and Fischer (2016), Gonzalez-Uribe and Mann (2017))
- Includes "small" (1-2%) fraction of warrants
- Issued early in firm's life cycle (e.g., after Series A)
- Common role: extend the "runway"
 - Firms utilize venture debt to delay raising equity
 - Additional time provides start-ups a chance to reach future milestones

- Minimally invasive cardiac valve repair technology startup
- Raised \$117 million in debt and equity
- Acquired by Abbott in 2009 for \$410 million

- Minimally invasive cardiac valve repair technology startup
- Raised \$117 million in debt and equity
- Acquired by Abbott in 2009 for \$410 million

"by allowing us to hit a critical milestone with that extra run time, even though drawing down the debt costs warrants and interest, our experience was that it paid for itself by increasing valuation and avoiding dilution" - Ferolyn Powell, CEO Industry insiders claim that venture debt is used to minimize dilution:

- True ... but only if firm actually hits milestones!
- Absent other frictions, no effect on ex-ante equity value.

This paper: theoretical foundation and empirical support for the use and implications of venture debt.

Stablish conditions under which venture debt is optimal

- Venture debt preserves entrepreneurial incentives
 - Traditional role of debt and risking up
 - Novel channel: Raising equity cheaply preserves "skin-in-the-game"
- Consider implications of debt on firm outcomes
 - Runway, Ability to raise capital
 - Closure, Acquisitions, IPO

Outline

1 Introduction

- Motivation
- Institutional Details

2 Theory

- Model
- Predictions

- Data
- Results

- There are three dates, $t \in \{0, 1, 2\}$.
- Firm owns a risky asset which pays $\gamma \mathbf{Y}$ at t = 2.
- Must invest X_0, X_1, X_2 for asset to have value (Y > 0).
 - Required capital raised from competitive, outside investors.

- There are three dates, $t \in \{0, 1, 2\}$.
- Firm owns a risky asset which pays $\gamma \mathbf{Y}$ at t = 2.
- Must invest X_0, X_1, X_2 for asset to have value (Y > 0).
 - Required capital raised from competitive, outside investors.

 $\mathbf{t} = \mathbf{2}$: γ (e.g., a pricing multiple) is realized.

$$\gamma = \begin{cases} \tilde{\gamma} + \delta & \text{w/ prob. } \tau \\ \tilde{\gamma} & \text{w/ prob. } p_1 - 2\tau \\ \tilde{\gamma} - \delta & \text{w/ prob. } 1 - p_1 + \tau \end{cases}$$

- There are three dates, $t \in \{0, 1, 2\}$.
- Firm owns a risky asset which pays $\gamma \mathbf{Y}$ at t = 2.
- Must invest X_0, X_1, X_2 for asset to have value (Y > 0).
 - Required capital raised from competitive, outside investors.

 $\mathbf{t} = \mathbf{2}$: γ (e.g., a pricing multiple) is realized.

$$\gamma = egin{cases} ilde{\gamma} + \delta & ext{w/ prob. } au \ ilde{\gamma} & ext{w/ prob. } extsf{p_1} - 2 au \ ilde{\gamma} - \delta & ext{w/ prob. } 1 - extsf{p_1} + au \end{cases}$$

$$\label{eq:t_t} \begin{split} \mathbf{t} &= \mathbf{1} : \mathbf{p}_1 \text{ (milestone) is realized, } \tau \text{ (market strategy) is chosen.} \\ \bullet \text{ Choice of } \tau \in [0, \tau_h] \text{ controls firm-level risk} \end{split}$$

- There are three dates, $t \in \{0, 1, 2\}$.
- Firm owns a risky asset which pays $\gamma \mathbf{Y}$ at t = 2.
- Must invest X_0, X_1, X_2 for asset to have value (Y > 0).
 - Required capital raised from competitive, outside investors.

 $\mathbf{t} = \mathbf{2}$: γ (e.g., a pricing multiple) is realized.

$$\gamma = egin{cases} ilde{\gamma} + \delta & ext{w/ prob. } au \ ilde{\gamma} & ext{w/ prob. } extsf{p_1} - 2 au \ ilde{\gamma} - \delta & ext{w/ prob. } 1 - extsf{p_1} + au \end{cases}$$

$$\label{eq:tau} \begin{split} \mathbf{t} &= \mathbf{1} : \mathbf{p}_1 \mbox{ (milestone) is realized, } \tau \mbox{ (market strategy) is chosen.} \\ \bullet \mbox{ Choice of } \tau \in [0, \tau_h] \mbox{ controls firm-level risk} \end{split}$$

 $\mathbf{t} = \mathbf{0}$: $p_1 \in \{p_h, p_l\}$, unconditional firm quality, $p_0 \equiv \mathbb{E}_0[p_1]$

An initial VC (owns θ) and entrepreneur (owns $1 - \theta$) run the firm.

Jesse Davis, Adair Morse, Xinxin Wang The Leveraging of Silicon Valley: 9 / 21

An initial VC (owns θ) and entrepreneur (owns $1 - \theta$) run the firm.

At t=0, the VC chooses how/when to raise capital:

- Raise $X_0 + X_1$ via equity ("upfront" financing)
- Raise X₀ via equity ("staged" financing)

• At $t = 1, 2 X_1, X_2$ raised via equity if feasible.

- Raise $X_0 \mathbb{E}[D]$ via equity ($D \equiv$ venture debt)
 - At $t = 1, 2 X_1 + D, X_2$ raised via equity if feasible

An initial VC (owns θ) and entrepreneur (owns $1 - \theta$) run the firm.

At t=0, the VC chooses how/when to raise capital:

- Raise $X_0 + X_1$ via equity ("upfront" financing)
- Raise X₀ via equity ("staged" financing)

• At $t = 1, 2 X_1, X_2$ raised via equity if feasible.

- Raise $X_0 \mathbb{E}[D]$ via equity ($D \equiv$ venture debt)
 - At $t = 1, 2 X_1 + D, X_2$ raised via equity if feasible

At t=1, the entrepreneur chooses firm strategy (τ) to maximize

$$\underbrace{\mathcal{A}_{1}\mathbb{E}[(1-\alpha_{2})\gamma Y|p_{1},\tau]}_{\text{Diluted Payoff}} + \underbrace{\mathcal{b}\mathbb{P}[Y>0|p_{1},\tau]}_{\text{Continuation Utility}},$$

 An increase in risk (↑ τ) ⇒ an increase in the entrepreneur's payoff but a decrease in the private benefit.

Image: A Image: A

An initial VC (owns θ) and entrepreneur (owns $1 - \theta$) run the firm.

At t=0, the VC chooses how/when to raise capital:

- Raise $X_0 + X_1$ via equity ("upfront" financing)
- Raise X₀ via equity ("staged" financing)

• At $t = 1, 2 X_1, X_2$ raised via equity if feasible.

• Raise $X_0 - \mathbb{E}[D]$ via equity ($D \equiv$ venture debt)

• At $t = 1, 2 X_1 + D, X_2$ raised via equity if feasible

At t=1, the entrepreneur chooses firm strategy (τ) to maximize

$$\underbrace{\mathcal{A}_{1}\mathbb{E}[(1-\alpha_{2})\gamma Y|p_{1},\tau]}_{\text{Diluted Payoff}} + \underbrace{\mathcal{b}\mathbb{P}[Y>0|p_{1},\tau]}_{\text{Continuation Utility}},$$

 An increase in risk (↑ τ) ⇒ an increase in the entrepreneur's payoff but a decrease in the private benefit.

• VC utilizes capital structure to incent risk-taking.

Optimal Strategy

Entrepreneur chooses high-risk/high-value ($\tau = \tau_h$) \iff

$$\underbrace{A_{1}}_{\text{Entrepreneur's Stake}} \geq \frac{b}{\delta Y - (\tilde{\gamma}Y - X_{2})}$$
(1)

Image: A math and A math and

Optimal Strategy

Entrepreneur chooses high-risk/high-value ($au= au_h$) \iff

$$\underbrace{A_1}_{\text{Entrepreneur's Stake}} \geq \frac{b}{\delta Y - (\tilde{\gamma}Y - X_2)}$$

Suppose the VC raises all funds $(X_0 + X_1)$ via equity at t = 0.

- No capital raised at $t = 1 \implies$ same risk-taking for p_l, p_h
 - Entrepreneur stake (A_1^0) independent of realized milestone.

(1)

Optimal Strategy

Entrepreneur chooses high-risk/high-value ($au= au_h$) \iff

$$\underbrace{A_1}_{\text{Entrepreneur's Stake}} \geq \frac{b}{\delta Y - (\tilde{\gamma}Y - X_2)}$$

Suppose the VC raises all funds $(X_0 + X_1)$ via equity at t = 0.

- No capital raised at $t = 1 \implies$ same risk-taking for p_l, p_h
 - Entrepreneur stake (A_1^0) independent of realized milestone.

Suppose the VC delays and raises some capital at t = 1.

- Entrepeneur dilution minimized if $p_1 = p_h$ (reach milestone).
 - Moreover, $A_1(p_h) > A_1^0 > A_1(p_l)$.
- Firm strategy/value depend upon information revealed

(1)

If ex-ante prospects are good, firm raises $X_0 + X_1$ at t = 0.

• Firm can raise equity "cheaply" and always takes risk.

Otherwise, the firm delays, and takes risk when $p_1 = p_h$.

- $\bullet\,$ If milestone hit, can raise equity cheaply, $\downarrow\,$ dilution
 - Issuing venture debt amplifies this benefit.
- Valuable even if firm fails when milestone missed $(p_1 = p_l)$.
 - Debt increases the required threshold for financing at t = 1.

Result 1: The firm is more likely to issue venture debt if

- \downarrow required capital until milestone (X₀)
- \bigcirc \uparrow entrepreneur's initial dilution
- \downarrow unconditional value of the firm (p_0)

Result 2: The optimal use of venture debt \uparrow firm value,

- \uparrow probability of short-term failure
- **2** \uparrow firm's expected value, conditional on survival
- $\textbf{3} \downarrow \text{firm's expected dilution}$

Result 2: The optimal use of venture debt \uparrow firm value,

- **2** \uparrow firm's expected value, conditional on survival
- **③** ↓ firm's expected dilution

Note: similar predictions arise if short-term debt issued at t = 1.

- If the required milestone at t=2 is unchanged, debt
 - increases equity sensitivity (standard channel)
 - increases upside benefit from risk-taking (convexity)
- Otherwise, debt can force "risking up" by entrepreneur.
 - In order to repay debt, risky strategy must be chosen.
 - \uparrow firm value if enough risk can be taken, $\tau_h > \underline{\tau}$

- Crunchbase a crowdsourced database that tracks startups
 - 62,403 firms and 135,069 financing rounds between 2000-2017
- Firm level characteristics
 - Founding team, founding date, current status (ongoing, inactive), exit status (IPO, acquired), employee count, industry
 - News and dates
 - Allows us to correctly account for closures
- Round level characteristics
 - Date, investors, syndication, type of financing, investment amount, stage of financing (series A,B,C), premoney valuation

Summary Statistics

	Mean	St. Dev.	25th%tile	Median	75th%ile
Number of Rounds	2.05	1.59	1	1	3
Percentage of Rounds that are Debt	35.85%	47.95%	0	0	1
Percentage of Rounds that are Early Debt	26.30%	44.03%	0	0	1
Total Investment	14,800,000	73,000,000	300,000	1,650,000	8,150,000
Log Total Investment	14.54	1.93	12.89	14.37	15.92
Total Debt Round Investment	7,508,000	49,400,000	0	0	6,000,000
Log Total Debt Round Investment	12.71	2.11	11.51	11.51	13.45
Total Early Debt Round Investment	2,342,000	30,500,000	0	0	0
Log Total Early Debt Round Investment	12.34	1.64	11.51	11.51	11.51
Year of First Financing	2012.48	3.59	2011	2013	2015
Exit Distribution					
Ongoing	70.99%		0	1	1
Resolved	29.01%		0	0	1
Acquired	33.87%		0	0	1
IPO	7.00%		0	0	0
Closed/Inactive	59.13%		0	1	1
Observations	62,403				

Jesse Davis, Adair Morse, Xinxin Wang The Leveraging of Silicon Valley: 14 / 21

Image: A match a ma

	Logit: Debt Issuance (Marginal Effects Shown)								
	Seed + 3	Series A		ies B		, ties C	Seri	es D+	
Dilution	1.325***	50110511	0.654***		0.291	105 0	0.104	0.0 0	
	[0.103]		[0.216]		[0.327]		[0.345]		
Dilution Proxy: Current:Cumulative									
Investment		0.116**		0.302***		0.417***		0.440***	
		[0.0455]		[0.104]		[0.124]		[0.0996]	
Controls:									
Year Polynomial	Y	Y	Y	Y	Y	Y	Y	Y	
F.E. Founding Year	Y	Y	Y	Y	Y	Y	Y	Y	
F.E. Lag Pre-Money	Y	Y	Y	Y	Y	Y	Y	Y	
Log Current Investment		Y		Y		Y		Y	
F.E. Prior Investment		Y		Y		Y		Y	
Observations	24,807	24,807	12,280	12,280	6,953	6,953	7,436	7,436	
Pseudo R-squared	0.0721	0.0785	0.0954	0.102	0.105	0.116	0.0597	0.0786	
1 SD of Dilution	0.0517		0.0326						
Effect of Dilution	6.85%		2.13%						
In %Change	27%		4%						
1 SD of Dilution Proxy		0.2588		0.2665		0.2458		0.2047	
Effect of Dilution Proxy		3%		8%		10%		9%	
In %Change		12%		17%		19%		17%	

Jesse Davis, Adair Morse, Xinxin Wang The Leveraging of Silicon Valley: 15 / 21

< 一型

Choice of Debt vs. Equity

		Μ	ultinomial Log	it : Omitted	Category is Equ	ity-Only Rou	nd		
	Estimation 1		Estimation 2 Estimati		tion 3	Estimat	ion 4		
	Serie	s A	Serie	s B	Serie	s C	Series D+		
	Debt + Equity	Debt Only	Debt + Equity	Debt Only	Debt + Equity	/ Debt Only	Debt + Equity	Debt Only	
Low Quintile Value Gain	-0.275***	0.102***	-0.373***	0.071***	-0.422***	0.101***	-0.338***	0.167***	
	[0.0115]	[0.00454]	[0.0158]	[0.00709]	[0.0200]	[0.00959]	[0.0175]	[0.0104]	
Dilution	0.733***	-0.0642	0.560**	-0.0401	0.425	-0.102	0.191	-0.0451	
	[0.173]	[0.0523]	[0.248]	[0.0376]	[0.338]	[0.0820]	[0.293]	[0.148]	
Year Polynomial	Y		Y		Y		Y		
F.E. Founding Year	ing Year Y		Y		Y	Y		Y	
F.E. Lag Pre-Money	Y		Y		Y		Y		
Observations	13,4	15	12,2	80	6,955		7,436		
Pseudo R-squared	0.09	03	0.14	12	0.174		0.132		
1 SD of Dilution	0.0467		0.0326						
Effect of Dilution	3.42%		1.83%						
In %Change	9%		4%						
1 SD of Weak Value Gai	0.2803	0.2803	0.3323	0.3323	0.3654	0.3654	0.1946	0.1946	
Effect of Weak Gain	-8%	3%	-12%	2%	-15%	4%	-6%	3%	
In %Change	-20%	28%	-29%	39%	-34%	43%	-18%	20%	
Choice Variable Mean	0.3783	0.1023	0.4232	0.0612	0.4568	0.0862	0.3615	0.1642	

Jesse Davis, Adair Morse, Xinxin Wang The Leveraging of Silicon Valley: 16 / 21

< 一型

		Log Duration (day	s) until Next Round				
	OLS with Fixed Effects						
	Seed + Series A	Series B	Series C	Series D+			
 Debt + Equity Round	-0.0826***	0.0855***	0.0774**	0.0837**			
	[0.0134]	[0.0250]	[0.0378]	[0.0397]			
Debt Only Round	-0.318***	-0.320***	-0.279***	-0.254***			
	[0.0473]	[0.0525]	[0.0556]	[0.0482]			
Log (Investment)	0.128***	0.109***	0.108***	0.128***			
	[0.00426]	[0.0123]	[0.0153]	[0.0157]			
F.E. Funding Year	Y	Y	Y	Y			
F.E. Founding Year	Y	Y	Y	Y			
F.E. Lag Pre-Money	Y	Y	Y	Y			
F.E. Prior Investment	Y	Y	Y	Y			
Observations	31,020	7,105	4,036	4,397			
R-squared	0.109	0.142	0.156	0.165			
Mean Duration (days)	465	511	475	429.7			
Mean Log Duration	5.76	5.89	5.78	5.66			

メロト メポト メモト メモト

	Logit: Closed Collapsed to 1 Observation per Firm				
	Collapsed to 1 Of	oservation per Firm			
Log Total Investment	-0.0228***	-0.0228***			
	[0.00114]	[0.00114]			
Log Debt Investment	-0.00104	-0.00568***			
	[0.000967]	[0.00162]			
Log Debt Investment Prior to Series B		0.00647***			
-		[0.00179]			
Fixed Effects:					
Founding Year	Y	Y			
First Funding Year	Y	Y			
Investment Rounds	Y	Y			
Observations	62,401	62,401			
Pseudo R-squared	0.147	0.147			

Jesse Davis, Adair Morse, Xinxin Wang The Leveraging of Silicon Valley: 18 / 21

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

	Cox Pro	Cox Proportional Hazard Analysis of Closure Risk						
		Sample: Funding	Round Agings					
	Seed+Series A	Series B	Series C	Series D+				
Debt Round	1.109***	0.888*	0.787**	0.783**				
	[0.0388]	[0.0590]	[0.0740]	[0.0893]				
Log (Investment)	0.898***	0.882***	0.854***	0.885***				
	[0.00729]	[0.0228]	[0.0318]	[0.0286]				
Controls								
F.E. Prior Investments	Y	Y	Y	Y				
F.E. Lag Pre-Money Valuation	Y	Y	Y	Y				
Cubic Polynomial of Age of Firm at Funding	Y	Y	Y	Y				
Cubic Polynomial of Economy Year	Y	Y	Y	Y				
Cubic Polynomial of Funding Round Year	Y	Y	Y	Y				
Subjects (Unique Funding Rounds)	61,264	10,049	5,543	5,819				
Failures	7,288	1,091	532	520				
Observations at Risk	232,972	43,674	23,299	21,307				

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

	Cox Proportional Hazard Analysis of Exit Risk Sample: Funding Round Agings								
	Seed + 1	Series A	Serie	es B	Series C		Series D+		
	Acquisition	IPO	Acquisition	IPO	Acquisition	IPO	Acquisition	IPO	
Debt Round	2.184***	1.018	1.349***	0.995	1.376***	1.042	1.269**	1.351**	
	[0.141]	[0.125]	[0.0991]	[0.106]	[0.133]	[0.123]	[0.138]	[0.161]	
Log (Investment)	1.122***	1.417***	0.963	1.358***	0.908**	1.315***	0.878***	1.317***	
	[0.0182]	[0.0436]	[0.0290]	[0.0858]	[0.0342]	[0.0661]	[0.0323]	[0.0647]	
Controls									
F.E. Prior Investments	Y	Y	Y	Y	Y	Y	Y	Y	
F.E. Lag Pre-Money Valuation	Y	Y	Y	Y	Y	Y	Y	Y	
Cubic Polynomial of Age of Firm at Funding	Y	Y	Y	Y	Y	Y	Y	Y	
Cubic Polynomial of Economy Year	Y	Y	Y	Y	Y	Y	Y	Y	
Cubic Polynomial of Funding Round Year	Y	Y	Y	Y	Y	Y	Y	Y	
Subjects (Unique Funding Rounds)	61,264	61,264	10,049	10,049	5,543	5,543	5,819	5,819	
Exits	1,892	570	982	480	596	389	494	521	
Observations at Risk	232,972	232,972	43,674	43,674	23,299	23,299	21,307	21,307	

▲口> ▲圖> ▲屋> ▲屋>

- Dilution is an important determinant of the use of venture debt (7% in Seed and Series A rounds, 2% in Series B rounds)
 - Novel theoretical channel that is aligned with what practitioners believe
 - "Skin-in-the-game" incents entrepreneurs to choose high-risk, high-value strategies
- Venture debt serves as a runway extension for firms that did not reach their milestones
 - Low valuation increases lead to an increase likelihood of raising debt over equity
- Consistent with the theoretical predictions of the implications of venture debt on firm outcomes
 - Startups are more likely to fail
 - But are also more likely to be acquired